Anoop Rajappan

Research Scientist, Rice University 6100 Main St, MS-321, Houston, TX 77005, USA anoopr@rice.edu | anoop.rice.edu | ORCID iD: 0000-0002-6843-509X | Google Scholar

EDUCATION

0	Massachusetts Institute of Technology, ScD in Mechanical EngineeringGPA 5.0/5.0, Minor in Applied MathematicsThesis: Polymers and Plastrons: Active and Passive Drag Reduction in Wall-BounderTurbulent Flows, advised by Prof. Gareth H. McKinley.Committee: Prof. Irmgard Bischofberger, Prof. Patrick S. Doyle	9/2020 ed
0	Massachusetts Institute of Technology, SM in Mechanical Engineering GPA 5.0/5.0, Thesis: <i>Skin Friction Drag Reduction in Turbulent Flows using</i> <i>Superhydrophobic Surfaces</i> , advised by Prof. Gareth H. McKinley	9/2017
0	Indian Institute of Technology Madras, BTech in Mechanical Engineering CGPA 9.78/10, Thesis: <i>Elastocapillary Flow in Polydimethylsiloxane Microchannels</i> advised by Prof. Ashis Kumar Sen	7/2015
RF	ESEARCH EXPERIENCE	
0	Research Scientist, <i>Mechanical Engineering, Rice University</i> Soft fluidic circuits for wearables, rheology of thermoset elastomers Advised by Prof. Daniel J. Preston	9/2023–present
0	Postdoctoral Fellow, <i>Rice Academy of Fellows, Rice University</i> Textile-based fluidic logic and energy harvesting for assistive wearables, surface adsorption, wettability, droplet filtration Advised by Prof. Daniel J. Preston	9/2020-8/2023
0	Graduate Researcher, <i>Mechanical Engineering, MIT</i> Superhydrophobic coatings and biopolymeric additives for turbulent drag reduction Advised by Prof. Gareth H. McKinley	9/2015-8/2020
0	Undergraduate Researcher , <i>Mechanical Engineering, IIT Madras</i> Elasto-capillary flows in microfluidic channels made using soft lithography Advised by Prof. Ashis Kumar Sen	8/2014-7/2015
TE	EACHING EXPERIENCE	
0	Guest Lecturer, MECH 472: Thermal Systems Design (Rice University) Taught two lectures on analogy between electric and fluid networks for undergraduat	2023 re students

(Course Instructor: Prof. Daniel J. Preston)

- Guest Lecturer, MECH 587: Capillarity and Wetting (Rice University)
 2023, 2022, 2021
 Lecture on interfacial instabilities for graduate students; evaluation score: 4.8/5.0
 (Course Instructor: Prof. Daniel J. Preston)
- Teaching Assistant, 2.25: Advanced Fluid Mechanics (MIT)
 9/2017–12/2017
 Led tutorial sessions and in-person office hours for graduate students; score: 6.4/7.0
 (Course Instructor: Prof. Gareth H. McKinley)

ACADEMIC AWARDS AND SCHOLARSHIPS

Postdoctoral Research Excellence Award, Mech. Engineering, Rice University	2023
Junior Fellow, Rice University Academy of Fellows	9/2020-8/2023
School of Engineering Wheless Fellowship, MIT	9/2015-5/2016
TOEFL India Scholarship, ETS (1 of 10 awardees from India)	2015
Sivasailam Merit Prize, IIT Madras (best undergraduate thesis in mech. eng.)	2015
Banco Foundation Prize, IIT Madras (best academic record in mech. eng.)	2015
TODAI-IIT Undergraduate Scholarship, University of Tokyo	2013, 2012
National Talent Search Scholarship, NCERT, New Delhi, India	2007

PUBLICATIONS IN PEER-REVIEWED JOURNALS

- 20. A. Rajappan, Z. Liu, T. Yap, R. M. Rasheed, "Foam-enabled fluidics for embedded sensing and control in soft robots," *under review* (2023).
- 19. T. Yap, A. Rajappan, M. D. Bell, R. M. Rasheed, C. J. Decker, D. J. Preston, "Thermally accelerated curing of platinum-catalyzed silicone elastomers," *Cell Reports Physical Science,* conditionally accepted pending revisions (2023).
- B. Jumet, Z. A. Zook, A. Yousaf, A. Rajappan, D. Xu, T. Yap, N. Fino, Z. Liu, M. K. O'Malley, D. J. Preston, "Fluidically programmed wearable haptic textiles," *Device* 1, 100059 (2023).
- M. D. Bell, K. Ye, T. Yap, A. Rajappan, Z. Liu, Y. J. Tao, D. J. Preston, "Rapid in situ thermal decontamination of wearable composite textile materials," *ACS Applied Materials and Interfaces* 15, 44521–44532 (2023).
- 16. Z. Liu, T. Yap, A. Rajappan, R. A. Shveda, R. M. Rasheed, and D. J. Preston, "Mitigating contamination with nanostructure-enabled ultraclean storage," *Nano Letters* 23, 6315–6322 (2023).
- 15. C. J. Decker, H. J. Jiang, M. P. Nemitz, S. E. Root, A. Rajappan, J. T. Alvarez, J. A. Tracz, L. Wille, D. J. Preston, G. M. Whitesides, "Programmable soft valves for digital and analog control," *Proceedings of the National Academy of Sciences (PNAS)* 119, e2205922119 (2022).
- A. Rajappan, B. Jumet, R. A. Shveda, C. J. Decker, Z. Liu, T. Yap, V. Sanchez, D. J. Preston, "Logic-enabled textiles," *Proceedings of the National Academy of Sciences (PNAS)* 119, e2202118119 (2022). *Featured in PNAS "In This Issue"*, 119(35), 2022.
- 13. R. A. Shveda,* A. Rajappan,* T. Yap, Z. Liu, M. D. Bell, B. Jumet, V. Sanchez, D. J. Preston, "A wearable textile-based pneumatic energy harvesting system for assistive robotics," *Science Advances* 8, eabo2418 (2022). (*denotes equal contribution)

- 12. T. Yap, Z. Liu, A. Rajappan, T. J. Shimokusu, D. J. Preston, "Necrobotics: biotic materials as ready-to-use actuators," *Advanced Science*, 2201174 (2022). *Featured on journal back cover, awarded the 2023 Ig Nobel prize in mechanical engineering.*
- R. M. Rasheed, L. J. Torres, A. Rajappan, M. M. Weislogel, D. J. Preston, "Additively manufactured multiplexed inertial coalescence filters," *Separation and Purification Technology* 292, 120966 (2022).
- B. Jumet, Z. A. Zook, D. Xu, N. Fino, A. Rajappan, M. W. Schara, J. Berning, N. Escobar, M. K. O'Malley, D. J. Preston, "A textile-based approach to wearable haptic devices," 5th IEEE International Conference on Soft Robotics (RoboSoft), 741–746 (2022).
- 9. Z. Liu, Y. Song, A. Rajappan, E. Wang, D. J. Preston, "Temporal evolution of surface contamination under ultra-high vacuum," *Langmuir* 38, 1252–1258 (2022).
- 8. **A. Rajappan**, B. Jumet, D. J. Preston, "Pneumatic soft robots take a step toward autonomy," *Science Robotics* 6, eabg6994 (2021).
- 7. A. Rajappan, G. H. McKinley, "Cooperative drag reduction in turbulent flows using polymer additives and superhydrophobic walls," *Physical Review Fluids* 5, 114601 (2020).
- 6. **A. Rajappan**, G. H. McKinley, "Polymers and plastrons in parallel yield enhanced turbulent drag reduction," *Fluids* 5, 197 (2020).
- 5. **A. Rajappan**, G. H. McKinley, "Epidermal biopolysaccharides from plant seeds enable biodegradable turbulent drag reduction," *Scientific Reports* 9, 18263 (2019).
- A. Rajappan, K. Golovin, B. Tobelmann, V. Pillutla, Abhijeet, W. Choi, A. Tuteja, G. H. McKinley, "Influence of textural statistics on drag reduction by scalable, randomly rough superhydrophobic surfaces in turbulent flow," *Physics of Fluids* 31, 042107 (2019). *(Selected as an "Editor's Pick" article)*
- 3. D. Panchanathan, A. Rajappan, K. K. Varanasi, G. H. McKinley, "Plastron regeneration on submerged superhydrophobic surfaces using in situ gas generation by chemical reaction," *ACS Applied Materials and Interfaces* 10, 33684 (2018).
- 2. D. George, A. Rajappan, A. K. Sen, "Elastocapillary powered manipulation of liquid plug in microchannels," *Applied Physics Letters* 107, 261601 (2015).
- 1. **A. Rajappan**, A. K. Sen, "Capillary flow enhancement in rectangular polymer micro-channels with a deformable wall," *Physical Review E* 92, 013024 (2015).

CONFERENCE PRESENTATIONS

- A. Rajappan, D.J. Preston, "A Compact Microporous Foam Resistor for Soft Pneumatic Logic Circuits," 2nd Conference on Micro Flow and Interfacial Phenomena (μFIP), Irvine, CA, USA (2022).
- A. Rajappan, B. Jumet, R. A. Shveda, C. J. Decker, Z. Liu, T. Yap, V. Sanchez, D. J. Preston, "Logic-enabled textiles," *5th IEEE International Conference on Soft Robotics (RoboSoft)*, Edinburgh, UK (2022). (Awarded best presenter for lightning talk at the "New Directions for Simplified Control of Soft Robots" workshop.)

- 5. A. Rajappan, G. H. McKinley, "Turbulent drag reduction using biopolymers and bio-inspired superhydrophobic surfaces," *72nd Annual Meeting of the APS Division of Fluid Dynamics*, Seattle WA, USA (2019).
- 4. **A. Rajappan**, G. H. McKinley, "Plant sourced biopolymers for turbulent drag reduction," *90th Annual Meeting of the Society of Rheology*, Houston, TX, USA (2018).
- 3. A. Rajappan, G. H. McKinley, "Superhydrophobic and polymer drag reduction in turbulent Taylor-Couette flow," *70th Annual Meeting of the APS Division of Fluid Dynamics*, Denver, CO, USA (2017).
- 2. A. Rajappan, G. H. McKinley, "Drag reduction using superhydrophobic surfaces," *MIT Mechanical Engineering Research Exhibition*, Cambridge, MA, USA (2017).
- A. K. Sen, A. Rajappan, "Elastocapillary flow in deformable PDMS microchannels," 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS), Gyeongju, South Korea (2015).

PATENTS

- 1. A. K. Sen, **A. Rajappan**, "Microfluidic device for enhancing capillary-driven flow in microchannels," Indian Patent 366293, granted May 7, 2021.
- C. J. Decker, H. J. Jiang, M. P. Nemitz, S. E. Root, A. Rajappan, J. T. Alvarez, J. A. Tracz, L. Wille, D. J. Preston, G. M. Whitesides, "Programmable soft actuators for digital and analog control," provisional patent application filed with USPTO (2022).
- 3. B. Jumet, Z. A. Zook, A. N. Yousaf, **A. Rajappan**, D. Xu, T. Yap, N. W. Fino, Z. Liu, M. K. O'Malley, D. J. Preston, "Fluidically programmed wearable haptic textiles," provisional patent application filed with USPTO (2023).
- 4. Z. Liu, T. Yap, A. Rajappan, R. M. Rasheed, D. J. Preston, "Texture-enabled clean storage," provisional patent application filed with USPTO (2023).
- 5. M. D. Bell, D. J. Preston, K. Ye, T. Yap, **A. Rajappan**, Z. Liu, Y. J. Tao, "Wearable composite textile materials for rapid in situ thermal decontamination," provisional patent application filed with USPTO (2023).

MENTORSHIP EXPERIENCE

Undergraduate students directly supervised:

- 1. **Esha Ghai**, Rice University '23 (9/2020–8/2021) Research topic: *Micro- and nanoscale surface design for fluid wicking*
- 2. Vi Vo, Rice University '23 (9/2021–12/2021) Research topic: *Layer-based fabrication of fluidic components*

Graduate students mentored:

1. **Rachel A. Shveda**, Rice University (9/2020–5/2021, M.S. student) Research topic: *Walking energy harvesting for wearable devices*

- 2. **Te Faye Yap**, Rice University (9/2020–present, Ph.D. student) Research topic: *Thermal and rheological characterization of elastomer curing*
- 3. **Marquise D. Bell**, Rice University (9/2020–present, Ph.D. student) Research topic: *Thermal decontamination of textile-based wearables*
- 4. **Zhen Liu**, Rice University (9/2020–present, Ph.D. student) Research topic: *Surface wettability and airborne contamination*
- 5. **Rawand M. Rasheed**, Rice University (5/2021–present, Ph.D. student) Research topic: *Fluidic modelling of inertial droplet filters*
- 6. **Barclay Jumet**, Rice University (7/2021–present, Ph.D. student) Research topic: *Fluidic modelling of textile pneumatic circuits*
- 7. **Richard J. Fontenot**, Rice University (7/2021–present, Ph.D. student) Research topic: *Thermofluidic modelling of heat exchangers*
- 8. **Irfan Zobayed**, Rice University (1/2023–present, Ph.D. student) Research topic: *Inertial smoke filtration, textile-based pneumatic actuators*
- 9. Adam T. Broshkevitch, Rice University (1/2023–present, M.S. student) Research topic: *Fabrication and characterization of heat-sealed textile devices*
- 10. Evan S. Noce, Rice University (1/2023–present, M.S. student) Research topic: *Wicking through additively manufactured porous media*
- 11. **Neethu T. Pottackal**, Rice University (1/2023–present, Ph.D. student) Research topic: *Additive manufacturing of food metamaterials*

PROFESSIONAL ACTIVITIES

Invited talks

1. Spotlight speaker, *Texas Regional Robotics Symposium (TEROS) 2023*, Rice University, Houston, TX, USA (April 14, 2023).

Grant writing experience

- "Edible mechanical metamaterials via 3D printing for enhanced food properties," with Neethu T. Pottackal, Te Faye Yap, and Daniel J. Preston (PI), 2023. *Awarded* funding by NSF under the EAGER program.
- "Edible metamaterials via 3D printing with enhanced food properties," with Neethu T. Pottackal, Te Faye Yap, Yogesh M. Joshi (PI), and Daniel J. Preston (PI), 2023. *Awarded* funding by the Rice–IITK Strategic Collaboration, Rice University and Indian Institute of Technology Kanpur.
- 3. "Elucidating the Photocatalytic Oxidation of Adsorbed Asphaltenes on Titania Surfaces," Daniel J. Preston (PI), 2022. Submitted to the *Welch Foundation Research Grant Program*.
- "Asphaltene Adsorption on Titania-Coated Surfaces and its Effect on Photocatalytic Efficiency," Daniel J. Preston (PI), 2021. Submitted to the *American Chemical Society (ACS) PRF DNI Grant Program.*

- 5. "Plant Sourced Biopolymers for Cost-Effective, Eco-Friendly Drag Reduction in Turbulent Flows," Gareth H. McKinley (PI), 2018. *Awarded* research funding by *Chevron Corporation*.
- 6. "Plant-Sourced Biopolymers for Turbulent Drag Reduction in Marine and Naval Applications," Gareth H. McKinley (PI), 2018. Submitted to *US Office of Naval Research*.

Service as peer-review referee

Advanced Science		
AIP Advances		
Applied Physics Letters		
Biology Open		
IEEE Robotics and Automation Letters*		
Journal of Materials Science		
Materials Advances*		
Micromachines		
Nature Communications*		
Physics of Fluids		
Proceedings of the National Academy of Sciences (PNAS)*		
Science Advances*		
Science Robotics*		
(*Co-reviewer with Prof. Daniel J. Preston)		

INDUSTRIAL EXPERIENCE

0	General Electric India Technology Centre , Bangalore, Karnataka, India EID Intern; performed flow modelling of the engine cooling and lubrication systems for locomotives.	Summer 2014			
0	Hindustan Machine Tools Limited , Kalamassery, Kerala, India Industrial Trainee in a full-fledged machine tool production facility making tool-room and CNC lathes.	Summer 2013			
LEADERSHIP AND COMMUNITY INVOLVEMENT					
0	Advisory Committee Member, National Service Scheme, IIT Madras Chapt	er 2013–2014			
0	Managerial Team Member, National Service Scheme, IIT Madras Chapter	2012–2013			
0	Student Volunteer, National Service Scheme, IIT Madras Chapter	2011–2012			
ACADEMIC REFERENCES					
	Prof. Daniel J. Preston Assistant Professor Department of Mechanical Engineering Rice University, Houston, TX, USA Email: <u>djp@rice.edu</u>	(Postdoctoral advisor)			

Prof. Gareth H. McKinley SoE Professor of Teaching Innovation Department of Mechanical Engineering Massachusetts Institute of Technology, Cambridge, MA, USA Email: gareth@mit.edu

Prof. Irmgard Bischofberger Associate Professor Department of Mechanical Engineering Massachusetts Institute of Technology, Cambridge, MA, USA Email: irmgard@mit.edu

Prof. Ashis Kumar Sen Professor Department of Mechanical Engineering Indian Institute of Technology Madras, Chennai, TN, India Email: <u>ashis@iitm.ac.in</u> (Doctoral thesis committee member)

(Doctoral advisor)

(Undergraduate advisor)